×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2210.15148v3 Announce Type: replace-cross
Abstract: Despite the numerous ways now available to quantify which parts or subsystems of a network are most important, there remains a lack of centrality measures that are related to the complexity of information flows and are derived directly from entropy measures. Here, we introduce a ranking of edges based on how each edge's removal would change a system's von Neumann entropy (VNE), which is a spectral-entropy measure that has been adapted from quantum information theory to quantify the complexity of information dynamics over networks. We show that a direct calculation of such rankings is computationally inefficient (or unfeasible) for large networks: e.g.\ the scaling is $\mathcal{O}(N^3)$ per edge for networks with $N$ nodes. To overcome this limitation, we employ spectral perturbation theory to estimate VNE perturbations and derive an approximate edge-ranking algorithm that is accurate and fast to compute, scaling as $\mathcal{O}(N)$ per edge. Focusing on a form of VNE that is associated with a transport operator $e^{-\beta{ L}}$, where ${ L}$ is a graph Laplacian matrix and $\beta>0$ is a diffusion timescale parameter, we apply this approach to diverse applications including a network encoding polarized voting patterns of the 117th U.S. Senate, a multimodal transportation system including roads and metro lines in London, and a multiplex brain network encoding correlated human brain activity. Our experiments highlight situations where the edges that are considered to be most important for information diffusion complexity can dramatically change as one considers short, intermediate and long timescales $\beta$ for diffusion.

Click here to read this post out
ID: 845043; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 9, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: