×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2202.13919v4 Announce Type: replace-cross
Abstract: Cosmology requires new physics beyond the Standard Model of elementary particles and fields. What is the fundamental physics behind dark matter and dark energy? What generated the initial fluctuations in the early Universe? Polarised light of the cosmic microwave background (CMB) may hold the key to answers. In this article, we discuss two new developments in this research area. First, if the physics behind dark matter and dark energy violates parity symmetry, their coupling to photons rotates the plane of linear polarisation as the CMB photons travel more than 13 billion years. This effect is known as `cosmic birefringence': space filled with dark matter and dark energy behaves as if it were a birefringent material, like a crystal. A tantalising hint for such a signal has been found with the statistical significance of $3\sigma$. Next, the period of accelerated expansion in the very early Universe, called `cosmic inflation', produced a stochastic background of primordial gravitational waves (GW). What generated GW? The leading idea is vacuum fluctuations in spacetime, but matter fields could also produce a significant amplitude of primordial GW. Finding its origin using CMB polarisation opens a new window into the physics behind inflation. These new scientific targets may influence how data from future CMB experiments are collected, calibrated, and analysed.

Click here to read this post out
ID: 844609; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 9, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: