×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2405.04797v1 Announce Type: new
Abstract: This article explores matter bounce non-singular cosmology in $f(R,L_m)$ gravity. We consider two non-linear $f(R,L_m)$ functional forms, specifically, $f(R,L_m) = \frac{R}{2} + \lambda R^2 + \alpha L_m$ and $f(R,L_m) = \frac{R}{2} + L_m ^\beta + \gamma$ representing a minimal coupling case. We derive the corresponding Friedmann-like equations for both the assumed models in the FLRW background, and then we present the impact of the model parameters along with the parameter of bouncing scale factor on the equation of state parameter, pressure, and the energy density. In addition, we examine the dynamical behavior of cosmographic parameters such as jerk, lerk, and snap parameters. Further, we find that the violation of the null energy condition along with the strong energy condition depicts the non-singular accelerating behavior, corresponding to both assumed non-linear $f(R,L_m)$ functions. Lastly, we present the behavior of the adiabatic speed of sound to examine the viability of the considered cosmological bouncing scenario.

Click here to read this post out
ID: 844574; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 9, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: