×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.01155v3 Announce Type: replace
Abstract: The significant electrical distance between wind power collection points and the main grid poses challenges for weak grid-connected wind power systems. A new type of voltage oscillation phenomenon induced by repeated low voltage ride-through (LVRT) of the wind turbine has been observed, threatening the safe and stable operation of such power systems. Therefore, exploring dynamic evolution mechanisms and developing stability analysis approaches for this phenomenon have become pressing imperatives. This paper introduces switched system theory for dynamic modeling, mechanism elucidation, and stability analysis of the repeated LVRT process. Firstly, considering the external connection impedance and internal control dynamics, a novel wind turbine grid-side converter (WT-GSC) switched system model is established to quantitatively characterize the evolution dynamic and mechanism of the voltage oscillation. Subsequently, a sufficient stability criterion and index grounded in the common Lyapunov function are proposed for stability analysis and assessment of the WT-GSC switched system. Moreover, to enhance the system stability, the Sobol' global sensitivity analysis method is adopted to identify dominant parameters, which can be further optimized via the particle swarm optimization (PSO) algorithm. Finally, simulations conducted on a modified IEEE 39-bus test system verify the effectiveness of the proposed dynamic modeling and stability analysis methods.

Click here to read this post out
ID: 844550; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 9, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: