×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2402.17455v2 Announce Type: replace
Abstract: Universal sound separation (USS) aims to extract arbitrary types of sounds from real-world recordings. This can be achieved by language-queried target sound extraction (TSE), which typically consists of two components: a query network that converts user queries into conditional embeddings, and a separation network that extracts the target sound accordingly. Existing methods commonly train models from scratch. As a consequence, substantial data and computational resources are required to improve the models' performance and generalizability. In this paper, we propose to integrate pre-trained models into TSE models to address the above issue. To be specific, we tailor and adapt the powerful contrastive language-audio pre-trained model (CLAP) for USS, denoted as CLAPSep. CLAPSep also accepts flexible user inputs, taking both positive and negative user prompts of uni- and/or multi-modalities for target sound extraction. These key features of CLAPSep can not only enhance the extraction performance but also improve the versatility of its application. We provide extensive experiments on 5 diverse datasets to demonstrate the superior performance and zero- and few-shot generalizability of our proposed CLAPSep with fast training convergence, surpassing previous methods by a significant margin. Full codes and some audio examples are released for reproduction and evaluation.

Click here to read this post out
ID: 844548; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 9, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 15
CC:
No creative common's license
Comments: