×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2312.06101v2 Announce Type: replace
Abstract: Conventional super-resolution (SR) schemes make heavy use of convolutional neural networks (CNNs), which involve intensive multiply-accumulate (MAC) operations, and require specialized hardware such as graphics processing units. This contradicts the regime of edge AI that often runs on devices strained by power, computing, and storage resources. Such a challenge has motivated a series of lookup table (LUT)-based SR schemes that employ simple LUT readout and largely elude CNN computation. Nonetheless, the multi-megabyte LUTs in existing methods still prohibit on-chip storage and necessitate off-chip memory transport. This work tackles this storage hurdle and innovates hundred-kilobyte LUT (HKLUT) models amenable to on-chip cache. Utilizing an asymmetric two-branch multistage network coupled with a suite of specialized kernel patterns, HKLUT demonstrates an uncompromising performance and superior hardware efficiency over existing LUT schemes. Our implementation is publicly available at: https://github.com/jasonli0707/hklut.

Click here to read this post out
ID: 844544; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 9, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 14
CC:
No creative common's license
Comments: