×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2402.01810v3 Announce Type: replace
Abstract: Bayesian regression determines model parameters by minimizing the expected loss, an upper bound to the true generalization error. However, the loss ignores misspecification, where models are imperfect. Parameter uncertainties from Bayesian regression are thus significantly underestimated and vanish in the large data limit. This is particularly problematic when building models of low- noise, or near-deterministic, calculations, as the main source of uncertainty is neglected. We analyze the generalization error of misspecified, near-deterministic surrogate models, a regime of broad relevance in science and engineering. We show posterior distributions must cover every training point to avoid a divergent generalization error and design an ansatz that respects this constraint, which for linear models incurs minimal overhead. This is demonstrated on model problems before application to thousand dimensional datasets in atomistic machine learning. Our efficient misspecification-aware scheme gives accurate prediction and bounding of test errors where existing schemes fail, allowing this important source of uncertainty to be incorporated in computational workflows.

Click here to read this post out
ID: 843408; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 8, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: