×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2008.08718v5 Announce Type: replace
Abstract: We present a novel data-driven strategy to choose the hyperparameter $k$ in the $k$-NN regression estimator without using any hold-out data. We treat the problem of choosing the hyperparameter as an iterative procedure (over $k$) and propose using an easily implemented in practice strategy based on the idea of early stopping and the minimum discrepancy principle. This model selection strategy is proven to be minimax-optimal, under the fixed-design assumption on covariates, over some smoothness function classes, for instance, the Lipschitz functions class on a bounded domain. The novel method often improves statistical performance on artificial and real-world data sets in comparison to other model selection strategies, such as the Hold-out method, 5-fold cross-validation, and AIC criterion. The novelty of the strategy comes from reducing the computational time of the model selection procedure while preserving the statistical (minimax) optimality of the resulting estimator. More precisely, given a sample of size $n$, if one should choose $k$ among $\left\{ 1, \ldots, n \right\}$, and $\left\{ f^1, \ldots, f^n \right\}$ are the estimators of the regression function, the minimum discrepancy principle requires calculation of a fraction of the estimators, while this is not the case for the generalized cross-validation, Akaike's AIC criteria or Lepskii principle.

Click here to read this post out
ID: 843397; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 8, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 5
CC:
No creative common's license
Comments: