×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2405.04490v1 Announce Type: cross
Abstract: Over the past decade, the rapid advancement of deep learning and big data applications has been driven by vast datasets and high-performance computing systems. However, as we approach the physical limits of semiconductor fabrication in the post-Moore's Law era, questions arise about the future of these applications. In parallel, quantum computing has made significant progress with the potential to break limits. Major companies like IBM, Google, and Microsoft provide access to noisy intermediate-scale quantum (NISQ) computers. Despite the theoretical promise of Shor's and Grover's algorithms, practical implementation on current quantum devices faces challenges, such as demanding additional resources and a high number of controlled operations. To tackle these challenges and optimize the utilization of limited onboard qubits, we introduce ReSaQuS, a resource-efficient index-value searching system within a quantum-classical hybrid framework. Building on Grover's algorithm, ReSaQuS employs an automatically managed iterative search approach. This method analyzes problem size, filters fewer probable data points, and progressively reduces the dataset with decreasing qubit requirements. Implemented using Qiskit and evaluated through extensive experiments, ReSaQuS has demonstrated a substantial reduction, up to 86.36\% in cumulative qubit consumption and 72.72\% in active periods, reinforcing its potential in optimizing quantum computing application deployment.

Click here to read this post out
ID: 843311; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 8, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: