×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2405.04436v1 Announce Type: cross
Abstract: Local relaxation after a quench in 1-D quantum many-body systems is a well known and very active problem with rich phenomenology. Except for pathological cases, the local relaxation is accompanied by the local restoration of the symmetries broken by the initial state that are preserved by the unitary evolution. Recently, the entanglement asymmetry has been introduced as a probe to study the interplay between symmetry breaking and relaxation in an extended quantum system. In particular, using the asymmetry, it has been shown that the more a symmetry is initially broken, the faster it may be restored. This surprising effect, which has been also observed in trapped-ion experiments, can be seen as a quantum version of the Mpemba effect and is manifested by the crossing at a finite time of the entanglement asymmetry curves of two different initial symmetry breaking configurations. In this paper we show, how, by tuning the initial state, the symmetry dynamics in free fermionic systems can display much richer behaviour than seen previously. In particular, for certain classes of initial states, including ground states of free fermionic models with long-range couplings, the entanglement asymmetry can exhibit multiple crossings. This illustrates that the existence of the quantum Mpemba effect can only be inferred by examining the late time behaviour of the entanglement asymmetry.

Click here to read this post out
ID: 843310; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 8, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: