×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2405.04197v1 Announce Type: new
Abstract: Fluorescent atomic defects, especially in dielectric materials, such as diamond are quite promising for several emerging quantum applications. However, efficient light extraction, directional emission, and narrow spectral emission are key challenges. We have designed dielectric metasurface exploiting Mie-resonance and the Kerker condition to address these issues. Our designed diamond metasurface, tailored for nitrogen-vacancy (NV) defect centers in diamond, predicts up to 500x improvement in the collection of 637 nm (zero phonon line) photons over that from the bare diamond. Our design achieves highly directional emission, predominantly emitting in a 20 degree lobe in the forward direction. This makes light collection more efficient, including for fiber-based collection. The predicted results are stable against the position of the emitter placed in the metaelement, thus alleviating the challenging fabrication requirement of precise positioning of the defect center. Equally importantly, our design approach can be applied to enhance single photon emission also from other defects such as SiV, other materials such as hBN, and other sources such as quantum dots.

Click here to read this post out
ID: 843142; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 8, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: