×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2405.04185v1 Announce Type: new
Abstract: Connected and Autonomous Vehicles (CAVs) technology facilitates the advancement of intelligent transportation. However, intelligent control techniques for mixed traffic flow at signalized intersections involving both CAVs and Human-Driven Vehicles (HDVs) require further investigation into the impact of backward-looking effect. This paper proposes the concept of 1+n+1 mixed platoon considering the backward-looking effect, consisting of one leading CAV, n following HDVs, and one trailing CAV. The leading and trailing CAVs collectively guide the movement of intermediate HDVs at intersections, forming an optimal control framework for platoon-based CAVs at signalized intersections. Initially, a linearized dynamic model for the 1+n+1 mixed platoon is established and compared with a benchmark model focusing solely on controlling the lead vehicle. Subsequently, constraints are formulated for the optimal control framework, aiming to enhance overall intersection traffic efficiency and fuel economy by directly controlling the leading and trailing CAVs in the platoon. Finally, extensive numerical simulations compare vehicle throughput and fuel consumption at signalized intersections under different mixed platoon control methods, validating that considering both front and backward-looking effects in the mixed platoon control method outperforms traditional methods focusing solely on the lead CAV.

Click here to read this post out
ID: 843140; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 8, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: