×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2405.03980v1 Announce Type: new
Abstract: This paper reports a three-dimensional (3D) simulation of a rotating liquid, helium-4, using a two-fluid model with spin-angular momentum conservation. Our model was derived from the particle approximation of an inviscid fluid with residual viscosity. Despite the fully classical mechanical picture, the resulting system equations were consistent with those of the conventional two-fluid model. We consider bulk liquid helium-4 to be an inviscid fluid, assuming that the viscous fluid component remains at finite temperatures. As the temperature decreased, the amount of the viscous fluid component decreased, ultimately becoming a fully inviscid fluid at absolute zero. Weak compressibility is assumed to express the volume change because some helium atoms do not render fluid owing to BECs or change states because of local thermal excitation. One can solve the governing equations for an incompressible fluid using explicit SPH (smoothed particle hydrodynamics), simultaneously reproducing density fluctuations and describing the fluid in a many-particle system. We assume the following fluid-particle duality: a hydrodynamic interfacial tension between the inviscid and viscous components or a local interaction force between two types of fluid particles. The former can be induced in the horizontal direction when non-negligible non-uniformity of the particles occurs during forced two-dimensional rotation, and the latter is non-negligible when the former is negligible. We performed a largescale simulation of 3D liquid helium forced to rotate horizontally using 32 GPUs. Compared with the low-resolution calculation using 2.4 million particles, the high-resolution calculation using 19.6 million particles showed spinning vortices close to those of the theoretical solution. We obtained a promising venue to establish a practical simulation method for bulk liquid helium-4.

Click here to read this post out
ID: 843127; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 8, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 5
CC:
No creative common's license
Comments: