×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2006.07769v3 Announce Type: replace
Abstract: In this paper, we study a stochastic strongly convex optimization problem and propose three classes of variable sample-size stochastic first-order methods including the standard stochastic gradient descent method, its accelerated variant, and the stochastic heavy ball method. In the iterates of each scheme, the unavailable exact gradients are approximated by averaging across an increasing batch size of sampled gradients. We prove that when the sample-size increases geometrically, the generated estimates converge in mean to the optimal solution at a geometric rate. Based on this result, we provide a unified framework to show that the rescaled estimation errors converge in distribution to a normal distribution, in which the covariance matrix depends on the Hessian matrix, covariance of the gradient noise, and the steplength. If the sample-size increases at a polynomial rate, we show that the estimation errors decay at the corresponding polynomial rate and establish the corresponding central limit theorems (CLTs). Finally, we provide an avenue to construct confidence regions for the optimal solution based on the established CLTs, and test the theoretic findings on a stochastic parameter estimation problem.

Click here to read this post out
ID: 842891; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 8, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 5
CC:
No creative common's license
Comments: