×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2405.04375v1 Announce Type: new
Abstract: Let $X$ be a Bernoulli random variable with the success probability $p$. We are interested in tight bounds on $\mathbb{E}[f(X_1,X_2)]$, where $X_i=\mathbb{E}[X| \mathcal{F}_i]$ and $\mathcal{F}_i$ are some sigma-algebras. This problem is closely related to understanding extreme points of the set of coherent distributions. A distribution on $[0,1]^2$ is called $\textit{coherent}$ if it can be obtained as the joint distribution of $(X_1, X_2)$ for some choice of $\mathcal{F}_i$. By treating random variables as vectors in a Hilbert space, we establish an upper bound for quadratic $f$, characterize $f$ for which this bound is tight, and show that such $f$ result in exposed coherent distributions with arbitrarily large support. As a corollary, we get a tight bound on $\mathrm{cov}\,(X_1,X_2)$ for $p\in [1/3,\,2/3]$. To obtain a tight bound on $\mathrm{cov}\,(X_1,X_2)$ for all $p$, we develop an approach based on linear programming duality. Its generality is illustrated by tight bounds on $\mathbb{E}[|X_1-X_2|^\alpha]$ for any $\alpha>0$ and $p=1/2$.

Click here to read this post out
ID: 842826; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 8, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 5
CC:
No creative common's license
Comments: