×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2405.04354v1 Announce Type: cross
Abstract: Semi-algebraic priors are ubiquitous in signal processing and machine learning. Prevalent examples include a) linear models where the signal lies in a low-dimensional subspace; b) sparse models where the signal can be represented by only a few coefficients under a suitable basis; and c) a large family of neural network generative models. In this paper, we prove a transversality theorem for semi-algebraic sets in orthogonal or unitary representations of groups: with a suitable dimension bound, a generic translate of any semi-algebraic set is transverse to the orbits of the group action. This, in turn, implies that if a signal lies in a low-dimensional semi-algebraic set, then it can be recovered uniquely from measurements that separate orbits.
As an application, we consider the implications of the transversality theorem to the problem of recovering signals that are translated by random group actions from their second moment. As a special case, we discuss cryo-EM: a leading technology to constitute the spatial structure of biological molecules, which serves as our prime motivation. In particular, we derive explicit bounds for recovering a molecular structure from the second moment under a semi-algebraic prior and deduce information-theoretic implications. We also obtain information-theoretic bounds for three additional applications: factoring Gram matrices, multi-reference alignment, and phase retrieval. Finally, we deduce bounds for designing permutation invariant separators in machine learning.

Click here to read this post out
ID: 842475; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 8, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: