×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2405.03953v1 Announce Type: cross
Abstract: Heart murmurs are a common manifestation of cardiovascular diseases and can provide crucial clues to early cardiac abnormalities. While most current research methods primarily focus on the accuracy of models, they often overlook other important aspects such as the interpretability of machine learning algorithms and the uncertainty of predictions. This paper introduces a heart murmur detection method based on a parallel-attentive model, which consists of two branches: One is based on a self-attention module and the other one is based on a convolutional network. Unlike traditional approaches, this structure is better equipped to handle long-term dependencies in sequential data, and thus effectively captures the local and global features of heart murmurs. Additionally, we acknowledge the significance of understanding the uncertainty of model predictions in the medical field for clinical decision-making. Therefore, we have incorporated an effective uncertainty estimation method based on Monte Carlo Dropout into our model. Furthermore, we have employed temperature scaling to calibrate the predictions of our probabilistic model, enhancing its reliability. In experiments conducted on the CirCor Digiscope dataset for heart murmur detection, our proposed method achieves a weighted accuracy of 79.8% and an F1 of 65.1%, representing state-of-the-art results.

Click here to read this post out
ID: 842462; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 8, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: