×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2405.03692v1 Announce Type: new
Abstract: Adaptive video streaming plays a crucial role in ensuring high-quality video streaming services. Despite extensive research efforts devoted to Adaptive BitRate (ABR) techniques, the current reinforcement learning (RL)-based ABR algorithms may benefit the average Quality of Experience (QoE) but suffers from fluctuating performance in individual video sessions. In this paper, we present a novel approach that combines imitation learning with the information bottleneck technique, to learn from the complex offline optimal scenario rather than inefficient exploration. In particular, we leverage the deterministic offline bitrate optimization problem with the future throughput realization as the expert and formulate it as a mixed-integer non-linear programming (MINLP) problem. To enable large-scale training for improved performance, we propose an alternative optimization algorithm that efficiently solves the MINLP problem. To address the issues of overfitting due to the future information leakage in MINLP, we incorporate an adversarial information bottleneck framework. By compressing the video streaming state into a latent space, we retain only action-relevant information. Additionally, we introduce a future adversarial term to mitigate the influence of future information leakage, where Model Prediction Control (MPC) policy without any future information is employed as the adverse expert. Experimental results demonstrate the effectiveness of our proposed approach in significantly enhancing the quality of adaptive video streaming, providing a 7.30\% average QoE improvement and a 30.01\% average ranking reduction.

Click here to read this post out
ID: 842420; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 8, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: