×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.06988v2 Announce Type: replace
Abstract: Explicit mathematical reconstructions of quantum networks play a significant role in developing quantum information science. However, tremendous parameter requirements and physical constraint implementations have become computationally non-ignorable encumbrances. In this work, we propose an efficient method for quantum network tomography by learning isometries on the Stiefel manifold. Tasks of reconstructing quantum networks are tackled by solving a series of unconstrained optimization problems with significantly less parameters. The stepwise isometry estimation shows the capability for providing information of the truncated quantum comb while processing the tomography. Remarkably, this method enables the compressive quantum comb tomography by specifying the dimensions of isometries. As a result, our proposed method exhibits high accuracy and efficiency.

Click here to read this post out
ID: 841120; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 7, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: