×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2405.03556v1 Announce Type: new
Abstract: We call a closed subset M of a Banach space X a free basis of X if it contains the null vector and every Lipschitz map from M to a Banach space Y, which preserves the null vectors can be uniquely extended to a bounded linear map from X to Y. We then say that two complete metric spaces M and N are Mol-equivalent if they admit bi-Lipschitz copies M' and N', respectively that are free bases of a common Banach space satisfying span M'=span N'.
In this note, we compare Mol-equivalence with some other natural equivalences on the class of complete metric spaces. The main result states that Mol-equivalent spaces must have the same \v{C}ech-Lebesgue covering dimension. In combination with the work of Godard, this implies that two complete metric spaces with isomorphic Lipschitz-free spaces need not be Mol-equivalent. Also, there exist non-homeomorphic Mol-equivalent metric spaces, and, in contrast with the covering dimension, the metric Assouad dimension is not preserved by Mol-equivalence.

Click here to read this post out
ID: 840375; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 7, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: