×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2405.01433v2 Announce Type: replace
Abstract: In this work, we systematically investigate the inflationary complexity of the two-mode squeezed state with thermal effect for the single field inflation, modified dispersion relation, and non-trivial sound speed with the method of closed system and open system, respectively. Since the various quantum gravitational framework could lead to this kind of modified dispersion relation and non-trivial sound speed, so that our analysis is valid for most inflationary models. $(a)$. The numeric of Krylov complexity in the method of the closed system indicates that the evolution of Krylov complexity highly depends on the squeezed angle parameter once taking the thermal effect into account, which will decay into some very tiny values, but the Krylov complexity will always enhance without thermal effect. $(b)$. The numeric of circuit complexity shows that the evolution is always increasing no matter whether there are thermal effects or not which is independent of the evolution of squeezed angle parameter. $(c)$. By utilizing the method of open system, we first construct the wave function. Our investigations show the evolution of Krylov complexity will enhance upon some peaks factoring in the thermal effects and the Krylov complexity will always increase without thermal effect. $(d)$. We also calculate the Krylov entropy in the method of closed system and open system, which indicates that the hotter the universe is, the more chaotic the universe becomes. Furthermore, our derivation for the Krylov complexity and Krylov entropy could nicely recover into the case of closed system under the weak dissipative approximation, which confirms the validity of construction for the wave function. Finally, our numeric of Lanczos coefficient shows that the non-trivial sound speed has minimal chaos compared to the other two cases.

Click here to read this post out
ID: 840082; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 7, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: