×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2206.01393v4 Announce Type: replace-cross
Abstract: This article introduces a modeling framework to characterize evacuee response to environmental stimuli during emergency egress. The model is developed in consistency with stress theory, which explains how an organism reacts to environmental stressors. We integrate the theory into the well-known social-force model, and develop a framework to simulate crowd evacuation behavior in multi-compartment buildings. Our method serves as a theoretical basis to study crowd movement at bottlenecks, and simulate their herding and way-finding behavior in normal and hazardous conditions. The pre-movement behavior is also briefly investigated by using opinion dynamics with social group model. The algorithms have been partly tested in FDS+EVAC as well as our simulation platform crowdEgress.

Click here to read this post out
ID: 839611; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 7, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: