×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2312.01606v3 Announce Type: replace
Abstract: To advance quality assurance in the welding process, this study presents a robust deep learning model that enables the prediction of two critical welds Key Performance Characteristics (KPCs): welding depth and average pore volume. In the proposed approach, a comprehensive range of laser welding Key Input Characteristics (KICs) is utilized, including welding beam geometries, welding feed rates, path repetitions for weld beam geometries, and bright light weld ratios for all paths, all of which were obtained from hairpin welding experiments. Two deep learning networks are employed with multiple hidden dense layers and linear activation functions to showcase the capabilities of deep neural networks in capturing the intricate nonlinear connections inherent within welding KPCs and KICs. Applying deep learning networks to the small numerical experimental hairpin welding dataset has shown promising results, achieving Mean Absolute Error (MAE) values as low as 0.1079 for predicting welding depth and 0.0641 for average pore volume. Additionally, the validity verification demonstrates the reliability of the proposed method. This, in turn, promises significant advantages in controlling welding outcomes, moving beyond the current trend of relying merely on monitoring for defect classification.

Click here to read this post out
ID: 839393; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 7, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: