×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2311.10361v2 Announce Type: replace
Abstract: A novel Bayesian framework is proposed, which explicitly relates the homography of one video frame to the next through an affine transformation while explicitly modelling keypoint uncertainty. The literature has previously used differential homography between subsequent frames, but not in a Bayesian setting. In cases where Bayesian methods have been applied, camera motion is not adequately modelled, and keypoints are treated as deterministic. The proposed method, Bayesian Homography Inference from Tracked Keypoints (BHITK), employs a two-stage Kalman filter and significantly improves existing methods. Existing keypoint detection methods may be easily augmented with BHITK. It enables less sophisticated and less computationally expensive methods to outperform the state-of-the-art approaches in most homography evaluation metrics. Furthermore, the homography annotations of the WorldCup and TS-WorldCup datasets have been refined using a custom homography annotation tool that has been released for public use. The refined datasets are consolidated and released as the consolidated and refined WorldCup (CARWC) dataset.

Click here to read this post out
ID: 839382; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 7, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: